

ig. 17.6. The extent of Palaeolake Tauca, dated to the Lateglacial interval ca. 13,000–11.
y Servant and Fontes (1978).

Lockheed Martin Space Operations, NASA Johnson Space Center, Houston, Texas, USA

Rationales for examining large terrestrial fans—

Himalayas, Tibetan Plateau, Gangetic plain—Kosi and Tista large fans

STS73-749-91

Large modern fans—

- have not been studied systematically
- several claimed to be possibly the "largest" or "one of the largest" on the planet
 - all exclude the largest identified in this study
 - one radius arbitrarily assigned as >100 km
- are seen as merely as large end-members of the alluvial fan continuum
- are analogs for features in the rock record

Data sources—

- handheld photographs from Shuttle, *Mir* and International Space Station taken over most parts of the Earth 55°N - 55°S
- 1: 1,000,000 ONC charts

Characteristics—

Kosi R. avulsions

- Kosi River avulsions—
 - cover entire surface of fan
 - average rate ~19 yr between switching events
 - slowest rate encountered is30,000 yr between switching events

Fan size—

even small rivers can generate fans as large as coastal deltas of major rivers

Fan radius—

• Foreland basin overfilling produces large fan radii

Foreland basin—nested pattern of large fans

-contiguous large fans cover an area of

>750,000 in the Andean foreland

Andes Mts Chaco plains— N Argentina W Paraguay

100 km

Fan radius—

- river profile is critical to fan radius, especially
 - profile slope
 - profile altitude (incision/ aggradation regime)

Basin paleogeography—
interpreted from detailed mining data
(Westphalian A & B British Isles)

- divergent drainage
- on a scale of hundreds of km

from Rippon 1996

Fish speciation and River switching on large fans—

Green parent population speciates into—

- red
- black
- yellow

daughter species that reenter the regional drainage

Lakes and river switching

- Green parent population speciates, after river switch, into Reds
- After a second switch, the original river has Green
 AND Red populations

b

Inhospitable trunk river and river switching

Greens' river is suddenly invaded by Reds from the neighboring basin

Neighboring basins and river switching

Okavango fan NW Botswana

Andes Mts Chaco plains— N Argentina W Paraguay

Conclusions—

Large fans ("inland deltas") are—

- Far larger than expected
- Widespread—unexpectedly so
- Cover enormous areas of some continents

Conclusions—

Large fans ("inland deltas") are—

- Far larger than expected
- Widespread—unexpectedly so
- Cover enormous areas of some continents

Andes Mts Chaco plains— N Argentina W Paraguay

Large fans may be the—

- dominant
- mesoscale
- depositional landform on continents

Conclusions—

Thus, large fans are also models for —

- Paleogeographies, crucial to various disciplines, including historical geology and modeling hydrocarbon environments
- Speciation of aquatic organisms

